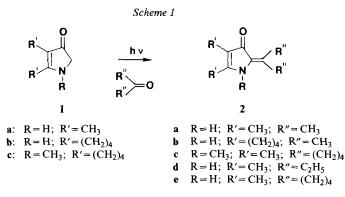
95. Photochemical Synthesis of 2-Alkylidene-4-pyrrolin-3-ones¹)

by Ramin Ghaffari-Tabrizi and Paul Margaretha

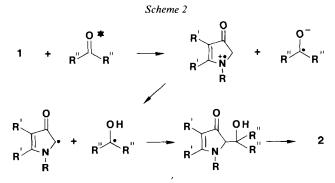

Institut für Organische Chemie und Biochemie, Universität, D-2000 Hamburg 13

(25.III.82)

Summary

Irradiation ($\lambda = 313$ nm) of the 4-pyrrolin-3-ones **1a-1c** in acetone-, 3-pentanoneand cyclopentanone solution affords the title compounds **2**, formally *via* H-abstraction by the excited ketone and recombination of the radical pair formed.

Light-induced [2+2]-cycloadditions of 2-cycloalkenones to olefins to form cyclobutanes have become one of the most important preparative useful photochemical reactions [1]. Oxa-enones, e.g. 2,3-dihydropyran-4-ones or 2,3-dihydrofuran-3-ones, have been successfully utilized in such cycloadditions [1] [2]. Although it has been shown, that uracil and derivatives [3] add to alkenes in acetone sensitized reactions, no results on the photochemical behaviour of simple aza-enones are found in the literature. We have investigated the photochemistry of the 4-pyrrolin-3-ones 1 [4] [5] in order to determine the effects due to substitution of oxygen in oxa-enones by nitrogen.



In contrast to oxa-enones, intersystem crossing from S_1 to T_1 for the compounds 1 studied seems to be extremely inefficient. Irradiations of 1 ($\lambda = 313$ or 366 nm) in acetonitrile in the presence or absence of olefins, *e.g.* isobutene or 2,3-dimethyl-2-butene, leads to similar slow degradation of starting material only.

¹) Diplomarbeit R.G.-T., University of Hamburg, 1981.

Acetone-sensitized reactions of 1a gave unexpected results. Again the T_1 state of 1 seems not to be populated, as the results in the presence or absence of the above mentioned olefins are again similar, but in contrast to direct excitation a new product 2a is now formed selectively. This formation of 2-alkylidene-4-pyrrolin-3ones (2) by irradiating 1 in a ketonic solvent seems to be quite general (Scheme 1). Similar thermal aldol condensations of compounds 1 [6] or the corresponding indoleninones [7] occur with aromatic and unsaturated aliphatic aldehydes but not with aliphatic ketones.

We assume that the initial step in the formation of 2 consists in electron transfer from 1 to the excited ketone [8] [9] followed by proton transfer to afford a radical pair; recombination and subsequent elimination of water then gives 2 (Scheme 2). The same radical pair would be formed by H-abstraction, as proposed for the formation of 2'-hydroxy-2'-methyl-2-ethylcyclohexene from excited acetone and cyclohexene [10] [11].

	M.p.	Yield	UV. (CH ₃ CN)	IR. (KBr)	MS.	¹ H-NMR. (CDCl ₃)	
2a	260°	74%	260 (4.05)	3200	151 (M ⁺)	1.70 (s, 3H)	1.89 (s, 3H)
				1660		2.13 (s, 3H)	2.41 (s, 3H)
			387 (3.50)	1540		5.77 (NH)	
2Ь	220°	47%	261 (3.96)	3200	177 (M ⁺)	1.71 (m, 4H)	1.89 (s, 3H)
				1660		2.23 (m, 2H)	2.35 (s, 3H)
			382 (3.61)	1540	149	2.41 (m, 2H)	5.76 (NH)
2c	Oil ^b)	55%	262	1680°)	191 (<i>M</i> ⁺)	1.70 (m, 4H)	2.07 (s, 3H)
				1540	. ,	2.18 (m, 2H)	2.36 (s, 3H)
			410			2.40 (m, 2H)	3.40 (s, 3H)
2d	201°	56%	252 (4.07)	3250	179 (M ⁺)	1.05 (t, 3H)	1.09 (t, 3H)
				1640		1.67 (s, 3H)	2.10 (s, 3H)
			388 (3.29)	1560	150	2.19 (qa, 2H)	2.85 (qa, 2H)
						5.73 (NH)	
2e	215°	63%	264 (4.12)	3130	177 (M ⁺)	1.55 (m, 4H)	1.70 (s, 3H)
				1670		2.13 (s, 3H)	2.42 (m, 2H)
			386 (3.55)	1540	176	2.89 (m, 2H)	5.68 (NH)

Table. Spectroscopic data of compounds 2^a)

a) Satisfactory elemental analyses were obtained for 2a, 2b, 2d and 2e.

b) Data for crude reaction product; attempts to purify 2c were unsuccessful.

c) In CCl₄.

1030

Physical and spectroscopic data of compounds 2 is summarized in the *Table*.

Results on the irradiation of 1 in the presence of non-ketonic sensitizers as well as of pyrrolinones with alkyl groups on C(5), reflecting a more typical enone behaviour will be published in a forthcoming paper.

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental Part

General. Absorptions in the IR. spectra are given in cm^{-1} and in the UV. spectra in nm $(log \epsilon)$. Chemical shifts in the NMR. spectra are given in ppm relative to TMS (=0 ppm) as internal standard.

Starting materials. Compounds 1 were synthesized according to [4] and [5]. Cyclopentanone and 3-pentanone were purified by distillation. Acetone and acetonitrile were analytical grade reagents.

Photolyses. Irradiations were carried out in Ar-degassed solutions by filtering the light of a 125W mercury lamp through pyrex glass.

Preparation of 2. A solution of 1 (10^{-3} mol) in either 10 ml acetone or in 10 ml 3-pentanone/ or cyclopentanone/acetonitrile 1:1, acetonitrile being added for solubility reasons, was irradiated for 20 h. After evaporation of the solvent the residue was chromatographed (SiO₂, ethyl acetate) and sublimed (100° , 0.01 Torr). Compound 2a partially precipitates under these reaction conditions and can be obtained by filtration. Yields and m.p. are given in the *Table*.

REFERENCES

- [1] S. W. Baldwin, in 'Organic Photochemistry', Vol.5, (A. Padwa, ed.), M. Dekker 1981, p. 123.
- [2] P. Margaretha, Chimia 29, 203 (1975).
- [3] A.J. Wexler, J.A. Hyatt, P.W. Raynolds, C. Cottrell & J.S. Swenton, J. Am. Chem. Soc. 100, 512 (1978).
- [4] G. Pfeiffer & H. Bauer, Justus Liebigs Ann. Chem. 1976, 383.
- [5] G. Pfeiffer & H. Bauer, Justus Liebigs Ann. Chem. 1980, 564.
- [6] H. Bauer, Chem. Ber. 104, 259 (1971).
- [7] A. Baeyer, Ber. Dtsch. Chem. Ges. 16, 2197 (1883).
- [8] P.J. Wagner, Topics in Curr. Chem. 66, 35 (1976).
- [9] S.G. Cohen, A. Parolan & G.H. Parsons, Chem. Rev. 73, 141 (1973).
- [10] P. de Mayo, J. B. Stothers & W. Templeton, Can. J. Chem. 39, 488 (1961).
- [11] P. Borrell & J. Sedlar, Trans. Faraday Soc. 66, 1670 (1970).